

Published on Web 04/29/2006

A Chiral Ag-Based Catalyst for Practical, Efficient, and Highly Enantioselective Additions of Enolsilanes to α-Ketoesters

Laura C. Akullian, Marc L. Snapper,* and Amir H. Hoveyda*

Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467 Received February 17, 2006; E-mail: amir.hoveyda@bc.edu

Research in these laboratories has led to the discovery of chiral amino acid-based metal complexes that catalyze C–C bond formation by addition of carbon nucleophiles to imines,¹ ketones,² and olefins.³ An objective of these programs is the development of efficient and practical methods for enantioselective formation of sterically hindered carbon centers, such as all-carbon quaternary stereogenic centers⁴ and tertiary alcohols.² Accordingly, we have initiated a program toward development of effective catalysts for asymmetric aldol reactions of ketones.

Through enantioselective Mukaiyama aldol reactions,⁵ α -ketoesters can be converted to synthetically versatile optically enriched tertiary alcohols. A limited number of related catalytic protocols have been disclosed. Evans has outlined the use of chiral C_2 symmetric bis(oxazolinyl)Cu(II) complexes in catalytic enantioselective additions of tert-butyl thioketene acetals to alkyl-substituted α -ketoesters (36% ee with *i*-Pr-substituted ketone).⁶ Pagenkopf has used modified bis(oxazoline) ligands in Cu(II)-catalyzed reactions of dienolsilanes to aryl- and alkyl-substituted α -ketoesters.⁷ Bolm has shown that C_1 -symmetric chiral sulfoximines are effective in Cu(II)-catalyzed aldol reactions of acetophenone-derived trimethylsilylenol ether and *n*-alkyl-substituted α -ketoesters.⁸ Nonetheless, noteworthy shortcomings persist. Substrate generality, particularly in reactions of enolsilanes with α -ketoesters that bear sterically demanding substituents, remains a challenge. There are pressing issues of practicality: Cu(II)-catalyzed processes require rigorous exclusion of air and moisture (drybox techniques).

Herein we report a new Ag-based chiral catalyst that promotes enantioselective additions of ketone-derived enolsilanes to α -ketoesters that contain alkyl, alkenyl, and aromatic substituents.⁹ Reactions proceed to >98% conversion with 1–10 mol % of AgF₂ and an amino acid-based ligand that bears a pyridyl Schiff base—a metal/ligand combination identified as optimal for the first time. Desired products are typically isolated in >90% yield and in up to 96% ee. Highest enantioselectivities are observed with sterically demanding alkyl-substituted α -ketoesters. The method is operationally simple: *reactions can be easily carried out with commercially available Ag salts (without purification), in air and with undistilled solvent.*

Catalyst optimization strategies developed in these laboratories¹⁰ were utilized to probe the efficiency of an assortment of amino acid-based ligands in combination with a range of transition metal salts (e.g., Cu(I), Cu(II), Ag(I), Al(III), Zn(II), Sc(III), and Yb(III) salts) to promote enantioselective Mukaiyama aldol addition of α -ketoester **1** and enolsilane **2**. With L- or D-Val and Phe serving as the initial representative amino acid moieties (AA1 and AA2; see Table 1), small peptides including those bearing a phosphine (e.g., **4a**), a phenol (e.g., **4b**), or a pyridyl (e.g., **4c**) N-terminus moiety were investigated; ligands bearing a single amino acid, as well as those with amine and amide linkages at their N-termini (vs Schiff bases, such as **4a–c**) were scrutinized.

Preliminary studies led us to determine that AgOAc or AgF, in combination with certain dipeptide ligands, generate appreciable

Table 1. Initial Screening of Chiral Ligands. Selected Data^a

^{*a*} Reactions in CH₂Cl₂ (entries 1–9) or THF (entries 10–11), under N₂ atm, 24 h. ^{*b*} Determined by 400 MHz ¹H NMR analysis. ^{*c*} Determined by chiral HPLC analysis (see Supporting Information for details).

reactivity and enantioselectivity (Table 1). Phosphines, such as 4a, optimal for Mannich-type reactions,1c,11 promote nonselective additions (entries 1-2, Table 1). Salicyl-based systems, such as 4b, are ineffective (entry 3). However, pyridyl-based 4c in combination with AgF delivers 3 in 73% conversion and 23% ee (24 h, 0 °C). Further screening indicated that higher asymmetric induction can be attained with L-t-Leu as AA1 and L-Phe as AA2: 3 is isolated in 56% ee with 5a and AgF (entry 6). Examination of modified pyridyl termini, represented by 5b-d (entries 7-9), pointed to Me-substituted 5d as the preferred ligand (63% ee, >98% conv). Lowering of temperature¹² leads to enhancement of enantioselectivity (84% ee) but reduced reactivity (60% conv). To improve catalyst activity, we turned to AgF₂, an oxidant that can serve as a source of AgF.¹³ Under optimized conditions (entry 11, Table 1), the reaction proceeds to >98% conversion to afford 3 in 84% ee (86% ee and 92% yield at -40 °C; entry 1, Table 2).

As the findings summarized in Table 2 illustrate, the combination of AgF_2 and **5d** can be used to catalyze enantioselective aldol reactions of enolsilanes and a variety of α -ketoesters in high yield and in up to 96% ee.

Several points regarding data in Table 2 are noteworthy. (1) Reactions of *n*-alkyl-substituted substrates deliver products in 86– 92% ee (entries 1–3). Addition to methyl pyruvate affords the desired product in 60% ee and 62% yield (>98% conv, -30 °C, 24 h). However, Ag-catalyzed processes are particularly effective Table 2.Ag-Catalyzed Enantioselective Aldol Additions to α -Ketoesters

	10	mol %	t-Bu ∎ H	0 II	Я	
G				ⁿ 5d 9F ₂ , THF		_OEt
			temp	time	yield	ee
entry	G	R	(°C)	(h)	(%) ^a	(%) ^b
1	(CH ₂) ₂ Ph	Ph	-40	48	92	86
2^c	(CH ₂) ₂ CO ₂ Me	Ph	-30	24	95	92
3	CH ₂ <i>i</i> -Pr	Ph	-30	24	95	87
4	<i>i</i> -Pr	Ph	-30	24	93	95
5	<i>i</i> -Pr	t-Bu	-15	48	61	92
6	<i>i</i> -Pr	Me	-40	48	>98	88
7	Су	Ph	-30	24	98	95
8	Cy	Me	-30	24	97	90
9	cyclopropyl	Ph	-40	48	90	96
10	$H_2C = CH(Me)$	Ph	-40	48	98	90
11	Ph	Ph	-30	24	93	60
12	2-thienyl	Ph	-30	48	95	72

with sterically hindered substrates (entries 4-10; 88-96% ee with those bearing α -branched alkyl and alkenyl groups). Reactions of aryl-substituted α -ketoesters proceed efficiently but with lower selectivity (entries 11-12); however, these are the best selectivities reported to date. (2) Enolsilanes derived from 3,3-dimethyl-2butanone (entry 5) and acetone (entries 6 and 8) can be used; sterically hindered enolsilanes require elevated temperature (-15) $^{\circ}$ C) to proceed to >98% conversion. (3) Higher enantioselectivities can be obtained at -40 °C (vs -30 °C), although longer reaction times are needed (48 vs 24 h). For example, the process in entry 10 (Table 2) affords the desired tertiary alcohol in 91% ee (85% yield) at -30 °C (24 h). (4) There is <2% conjugate addition product formed with the α,β -unsaturated substrate in entry 10.¹⁴ (5) Optically enriched products bearing a suitably positioned carboxylic ester (cf. entry 2, Table 2) can be converted to the derived lactone simply by the use of acidic workup conditions; the example in eq 1 is illustrative. (6) Ag-catalyzed reactions were set up in air on a benchtop; the solution was purged with N₂ and the vessel sealed. Reactions can be carried out exposed to air and in commercial grade undistilled THF (eq 2). (7) Although transformations in Table 2 were run with 10 mol % catalyst, enantioselective additions proceed to >98% conversion, in high yield and enantioselectivity with 1 mol % catalyst loading (even when the solution is exposed to air); the example in eq 2 is illustrative.¹⁵

The catalytic process can be carried out with Danishefsky's diene (eq 3).¹¹ Reactions proceed with α -ketoesters that bear sterically hindered alkyl substituents with significantly higher enantioselectivity than that previously reported.¹⁶ In contrast to Cu(II)-catalyzed methods,¹⁷ the Ag-catalyzed reactions are run under operationally simple conditions.

We have thus identified a chiral amino acid-based ligand that in combination with AgF₂ promotes efficient and enantioselective Mukaiyama aldol additions to α -ketoesters. The catalytic process is effective with a range of substrates, particularly, those that bear sterically hindered alkyl substituents; the method is complementary, in terms of substrate range, to related catalytic enantioselective procedures.^{6–8} Investigations directed toward outlining the mechanistic details¹³ of the catalytic protocol are in progress.

Acknowledgment. This paper is dedicated to Professor K. C. Nicolaou on the occasion of his 60th birthday. Financial support was provided by the NIH (GM-57212).

Supporting Information Available: Experimental procedures and spectral and analytical data for all compounds (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (a) Kruger, C. A.; Kuntz, K. W.; Dzierba, C. D.; Wirschun, W. G.; Gleason, J. D.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 1999, 121, 4284–4285. (b) Porter, J. R.; Traverse, J. F.; Hoveyda, A. H.; Snapper, M. L. J. Am. Chem. Soc. 2001, 123, 984–985. (c) Josephsohn, N. S.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2004, 126, 3734–3735.
- (2) (a) Deng, H.; Isler, M. P.; Snapper, M. L.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2002, 1009–1012. (b) Wieland, L. C.; Deng, H.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2005, 127, 15453–15456.
- (3) (a) Degrado, S. J.; Mizutani, H.; Hoveyda, A. H. J. Am. Chem. Soc. 2001, 123, 755-756. (b) Luchaco-Cullis, C. A.; Hoveyda, A. H. J. Am. Chem. Soc. 2002, 124, 8192-8193. (c) Murphy, K. E.; Hoveyda, A. H. J. Am. Chem. Soc. 2003, 125, 4690-4691. For an overview, see: (d) Hird, A. W.; Kacprzynski, M. A.; Hoveyda, A. H. Chem. Commun. 2004, 1779-1785.
- (4) (a) Kacprzynski, M. A.; Hoveyda, A. H. J. Am. Chem. Soc. 2004, 126, 10676–10681.
 (b) Wu, J.; Mampreian, D. A.; Hoveyda, A. H. J. Am. Chem. Soc. 2005, 127, 4584–4585.
 (c) Hird, A. W.; Hoveyda, A. H. J. Am. Chem. Soc. 2005, 127, 14988–14989.
- (5) For reviews on catalytic enantioselective aldol reactions, see: Modern Aldol Reactions; Mahrwald, R., Ed.; Wiley-VCH: Weinheim, Germany, 2004.
- (6) (a) Evans, D. A.; Burgey, C. S.; Kozlowski, M. C.; Tregay, S. W. J. Am. Chem. Soc. 1999, 121, 686-699 and references therein. See also: (b) van Lingen, H. L.; van de Mortel, J. K. W.; Hekking, K. F. W.; van Delft, F. L.; Sonke, T.; Rutjes, F. P. J. T. Eur. J. Org. Chem. 2003, 317-324.
 (7) Le, J. C.-D.; Pagenkopf, B. L. Org. Lett. 2004, 6, 4097-4099.
 (8) (a) Langner, M.; Bolm, C. Angew. Chem., Int. Ed. 2004, 43, 5984-5987.
- (b) Lagner, M.; Bolm, C. Angew. Chem., Int. Ed. 2004, 43, 5984-5987.
 (c) Langner, M.; Remy, P.; Bolm, C. Chem.-Eur. J. 2005, 11, 6254-6256.
- (9) For Ag-catalyzed enantioselective aldol reactions of aldehydes, see: (a) Yanagisawa, A.; Matsumoto, Y.; Nakashima, K.; Asakawa, K.; Yamamoto, H. J. Am. Chem. Soc. 1997, 119, 9319–9320. For addition to aldimines, see ref 1c.
- (10) Cole, B. M.; Shimizu, K. D.; Kruger, C. A.; Harrity, J. P.; Snapper, M. L.; Hoveyda, A. H. Angew. Chem., Int. Ed. Engl. 1996, 35, 1668–1671.
- (11) For Ag(I)-catalyzed enantioselective additions to aldimines (AgOAc and amino acid-based phosphines), see: Josephsohn, N. S.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2003, 125, 4018–4019.
- (12) At lower temperatures, increased reactivity is observed with THF as solvent (e.g., 42% conv in CH₂Cl₂ for entry 10).
- (13) Preliminary studies indicate that AgF₂ is reduced by enolsilanes. For a similar reduction of Ag(I) to Ag(0) by an enolsilane, see: Ito, Y.; Konoike, T.; Saegusa, T. J. Am. Chem. Soc. **1975**, *97*, 649–651.
- (14) For examples of Cu(II)-catalyzed asymmetric conjugate additions of enolsilanes to unsaturated carbonyls, see: Johnson, J. S.; Evans, D. A. Acc. Chem. Res. 2000, 33, 325–335 and references therein.
- (15) When reactions are performed at >50 mg scale, addition of 1 equiv of MeOH is required for complete conversion. For example, the reaction in eq 2, with 250 mg of α-ketoester, proceeds to 33% conversion (10 mol % of 5d, -30 °C, 24 h) but to >98% conversion in the presence of 1 equiv of MeOH. Presumably, on small scale, there is sufficient moisture present to ensure high conversion. Mechanistic details regarding the importance of a proton source are under investigation and will be reported in due course.
- (16) Yao, S.; Johannsen, M.; Audrain, H.; Hazell, R. G.; Jorgensen, K. A. J. Am. Chem. Soc. 1998, 120, 8599–8605.
- (17) For an overview of related catalytic enantioselective cycloadditions to ketones, see: Jorgensen, K. A. Eur. J. Org. Chem. 2004, 2093–2102.

JA061166O